Computer Vision Using Deep Learning

Computer Vision Using Deep Learning: Neural Network Architectures with Python and Keras

eBook Details:

  • Paperback: 329 pages
  • Publisher: WOW! eBook (February 15, 2021)
  • Language: English
  • ISBN-10: 1484266153
  • ISBN-13: 978-1484266151

eBook Description:

Computer Vision Using Deep Learning: Neural Network Architectures with Python and Keras

Organizations spend huge resources in developing software that can perform the way a human does. Image classification, object detection and tracking, pose estimation, facial recognition, and sentiment estimation all play a major role in solving computer vision problems.

This book will bring into focus these and other deep learning architectures and techniques to help you create solutions using Keras and the TensorFlow library. You’ll also review mutliple neural network architectures, including LeNet, AlexNet, VGG, Inception, R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN, YOLO, and SqueezeNet and see how they work alongside Python code via best practices, tips, tricks, shortcuts, and pitfalls. All code snippets will be broken down and discussed thoroughly so you can implement the same principles in your respective environments.

What You’ll Learn

  • Examine deep learning code and concepts to apply guiding principals to your own projects
  • Classify and evaluate various architectures to better understand your options in various use cases
  • Go behind the scenes of basic deep learning functions to find out how they work

Computer Vision Using Deep Learning offers a comprehensive yet succinct guide that stitches DL and CV together to automate operations, reduce human intervention, increase capability, and cut the costs.

DOWNLOAD

1 Response

  1. May 28, 2021

    […] Computer Vision with Maker Tech: Detecting People With a Raspberry Pi, a Thermal Camera, and Machine Learning […]

Leave a Reply

Your email address will not be published. Required fields are marked *

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.